ALGEBRA PROPERTIES

ARITHMETIC PROPERTIES		EXPONENT PROPERTIES		PROPERTIES OF INEQUALITIES	
ASSOCIATIVE $a(bc)$ =	= (ab)c a		$a^n = a^{n+m}$	If $a < b$ then $a + c$	< b + c and $a - c < b - c$
COMMUTATIVE $a + b =$	= b + a and $ab = ba$	(a^n)	$m = a^{nm}$	If $a < b$ and $c > 0$ t	then $ac < bc$ and $a/c < b/c$
DISTRIBUTIVE $a(b+c) = ab + ac$				If $a < b$ and $c < 0$ t	then $ac > bc$ and $a/c > b/c$
ARITHMETIC OPERATIONS	SEXAMPLES	$(ab)^n = a^n b^n$		PROPERTIES OF	COMPLEX NUMBERS
$ab + ac = a(b + c) \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$		$a^{-n} = \frac{1}{a^n}$		$i = \sqrt{-1}$ $i^2 = -1$	
	$\frac{-b}{-d} = \frac{b-a}{d-c}$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$		$\sqrt{-a} = i\sqrt{a},$	$a \ge 0$
		an	1	(a+bi)+(c+a)	di) = a + c + (b + d)i
$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc} \qquad \qquad \frac{c-a}{a-c} \qquad \qquad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$		$\frac{a^{n}}{a^{m}} = a^{n-m} = \frac{1}{a^{m-n}}$ $a^{0} = 1, a \neq 0$ $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ $\frac{1}{a^{-n}} = a^{n}$ $a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = (a^{n})^{\frac{1}{m}}$		(a+bi)-(c+a)	di) = a - c + (b - d)i
				(a+bi)(c+di)	= ac - bd + (ad + bc)i
$\frac{a}{\left(\frac{b}{c}\right)} = \frac{a}{b} \qquad \frac{ab + ac}{a} = b + c, a \neq 0$ $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$				(a+bi)(a-bi)	$=a^2+b^2$
				$ a+bi = \sqrt{a^2}$	$+ b^2$
				$\overline{(a+b\iota)} = a-b$	i
				$\overline{(a+b\iota)}(a+bi)$	$= a + bi ^2$
QUADRATIC EQUATION				$\frac{1}{(1-1)^2} = \frac{1}{(1-1)^2}$	$\frac{a-bi}{bi)(a-bi)} = \frac{a-bi}{a^2+b^2}$
For the equation $ax^{2} + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$				$(a+bi)$ $(a+bi)(a-bi)$ a^2+b^2	
			COMMON FACTORI	NG EXAMPLES	ABSOLUTE VALUE
RADICAL PROPERTIES	LOGARITHM PROPER	TIES	$x^2 - a^2 = (x+a)(x+a)(x+a)(x+a)(x+a)(x+a)(x+a)(x+a)$	(a - a)	$ a = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}$
$a, b \ge 0$ for even n	if $y = \log_b x$ then $b^y = x$ $\log_b b = 1$ and $\log_b 1 = 0$ $\log_b b^x = x$ $b^{\log_b x} = x$ $\log_a x = \frac{\log_b x}{\log_b a}$		$x^{2} + 2ax + a^{2} = (x + a)^{2}$ $x^{2} - 2ax + a^{2} = (x - a)^{2}$ $x^{2} + (a + b)x + ab = (x + a)(x + b)$ $x^{3} + 3ax^{2} + 3a^{2}x + a^{3} = (x + a)^{3}$ $ a $ $ a $		
$\sqrt[n]{a} = a^{\frac{1}{n}}$					a = -a
$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$					$ a \ge 0$
$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$					ab = a b
					a
$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\log_b(x^r) = r \log_b x$		$x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2})$		$\left \frac{a}{b}\right = \frac{ a }{ b }$
$\sqrt[n]{a^n} = a$, if <i>n</i> is odd $\log_b(xy) = \log_b x + \log_b x$			$x^3 - a^3 = (x - a)(x - a)(x$		$ a+b \le a + b $
$\sqrt[n]{a^n} = a $, if <i>n</i> is even	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b x$	$x^{2n} - a^{2n} = (x^n - a^n)$		$a^n)(x^n+a^n)$	

eCalc.com The Best Online Calculator

- Unit Converter
- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

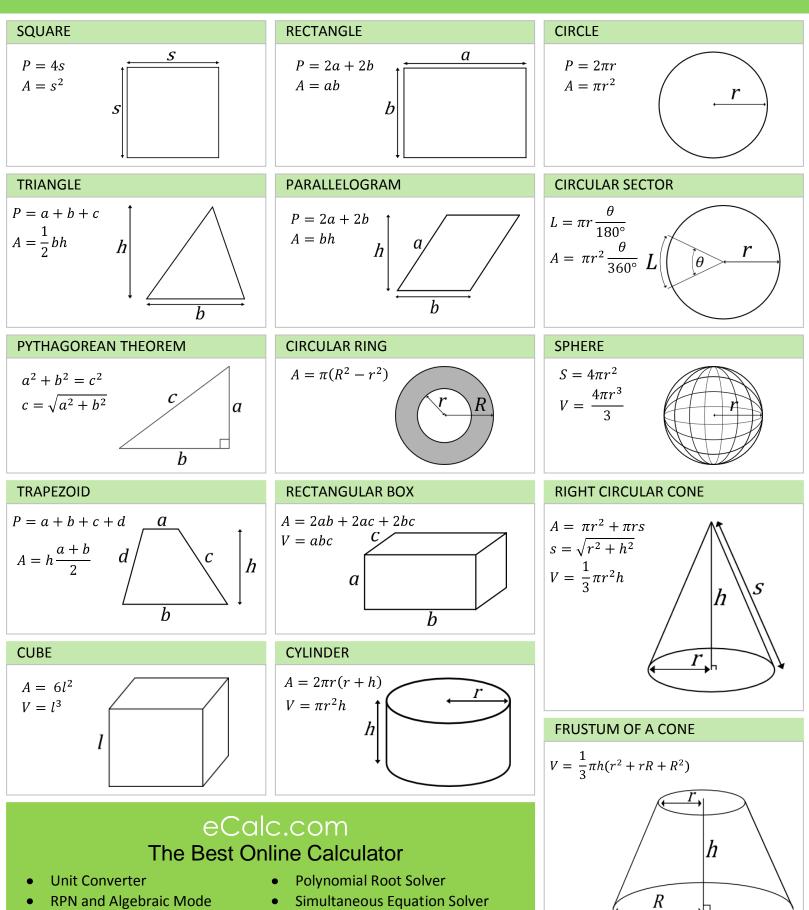
COMPLETING THE SQUARE

 $ax^2 + bx + c = a(\dots)^2 + \text{constant}$

- 1. Divide by the coefficient a.
- 2. Move the constant to the other side.
- 3. Take half of the coefficient b/a, square it and add it to both sides.
- 4. Factor the left side of the equation.
- 5. Use the square root property.
- 6. Solve for x.

The Best Source for Math Help Reference Sheets

GEOMETRY SHAPES AND SOLIDS



- Complex Numbers
 - Free Online and Downloadable

Constants Library Decimal to Fraction

The Best Source for Math Help Reference Sheets

TRIGONOMETRY LAWS AND IDENTITIES

TANGENT IDENTITIES	RECIPROCAL IDENTITIES		
$\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$	$\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$	$\sin \theta = \frac{1}{\csc \theta}$ $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$	
EVEN/ODD IDENTITIES	DOUBLE ANGLE IDENTITIES		
$\sin(-\theta) = -\sin\theta$	$\sin(2\theta) = 2\sin\theta\cos\theta$		
$\cos(-\theta) = \cos\theta$	$\cos(2\theta) = \cos^2\theta - \sin^2\theta$		
$\tan(-\theta) = -\tan\theta$	$= 2\cos^2\theta - 1$		
$\csc(-\theta) = -\csc\theta$	$= 1 - 2\sin^2\theta$		
$\sec(-\theta) = \sec \theta$ $\cot(-\theta) = -\cot \theta$	$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$		
、 <i>·</i>			

PYTHAGOREAN IDENTITIES		
$\sin^2\theta + \cos^2\theta = 1$		
$\tan^2\theta + 1 = \sec^2\theta$		
$\cot^2\theta + 1 = \csc^2\theta$		
HALF ANGLE IDENTITIES		
$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$		
$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+\cos\theta}{2}}$		
$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$		

PERIODIC IDENTITIES

$$\sin(\theta + 2\pi n) = \sin\theta$$

$$\cos(\theta + 2\pi n) = \cos\theta$$

 $\tan(\theta + \pi n) = \tan\theta$

 $\csc(\theta + 2\pi n) = \csc\theta$

$$\sec(\theta + 2\pi n) = \sec\theta$$

$$\cot(\theta + \pi n) = \cot\theta$$

LAW OF COSINES

LAW OF SINES

 $\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$

LAW OF TANGENTS

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

PRODUCT TO SUM IDENTITIES

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$
$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

SUM/DIFFERENCES IDENTITIES

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

SUM TO PRODUCT IDENTITIES		
$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$		
$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$		
$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$		
$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$		

MOLLWEIDE'S FORMULA

$$\frac{a+b}{c} = \frac{\cos\left[\frac{1}{2}(\alpha-\beta)\right]}{\sin\left(\frac{1}{2}\gamma\right)}$$

$\frac{a-b}{a+b} = \frac{\tan\left[\frac{1}{2}(\alpha-\beta)\right]}{\tan\left[\frac{1}{2}(\alpha+\beta)\right]}$ $\frac{b-c}{b+c} = \frac{\tan\left[\frac{1}{2}(\beta-\gamma)\right]}{\tan\left[\frac{1}{2}(\beta+\gamma)\right]}$

$$\frac{a-c}{a+c} = \frac{\tan\left[\frac{1}{2}(\alpha-\gamma)\right]}{\tan\left[\frac{1}{2}(\alpha+\gamma)\right]}$$

COFUNCTION IDENTITIES

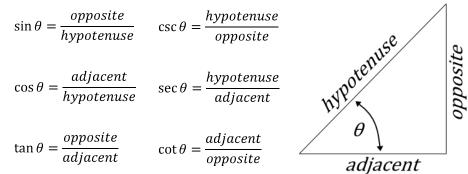
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$
$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

eCalc.com The Best Online Calculator

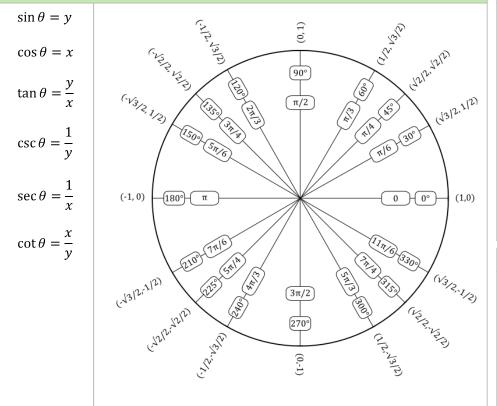
- Unit Converter
- RPN and Algebraic Mode
- **Constants Library**
- Decimal to Fraction Converter
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

TRIGONOMETRY DEFINITION

RIGHT TRIANGLE DEFINITION



UNIT CIRCLE DEFINITION



eCalc.com

The Best Online Calculator

INVERSE TRIG FUNCTION NOTATION

 $\sin^{-1} x \equiv \arcsin x \equiv \operatorname{Asin} x$

 $\cos^{-1} x \equiv \arccos x \equiv A \cos x$

$$\tan^{-1} x \equiv \arctan x \equiv \operatorname{Atan} x$$

INVERSE TRIG DOMAIN $\sin^{-1} x : -1 \le x \le 1$ $\cos^{-1} x : -1 \le x \le 1$ $\tan^{-1} x : -\infty \le x \le \infty$

\overline{nt} $| -\infty \le \cot \theta \le \infty$

TRIG FUNCTIONS DOMAIN

 $\csc \theta \ge 1$ and $\csc \theta \le -1$

 $\sec \theta \ge 1$ and $\sec \theta \le -1$

TRIG FUNCTIONS RANGE

 $-1 \le \sin \theta \le 1$

 $-1 \le \cos \theta \le 1$

 $-\infty \leq \tan \theta \leq \infty$

 $\sin \theta$, θ can be any angle

 $\cos \theta$, θ can be any angle

$\tan \theta, \ \theta \neq \left(n + \frac{1}{2}\right) \ \pi,$	$n = 0, \pm 1, \pm 2,$
$\csc \theta, \ \theta \neq n \pi, \qquad n = 0,$, ±1, ±2,
$\sec \theta, \ \theta \neq \left(n + \frac{1}{2}\right) \ \pi,$	$n = 0, \pm 1, \pm 2,$
$\cot \theta, \ \theta \neq n \pi, \qquad n = 0,$, ±1, ±2,

TRIG FUNCTIONS PERIOD

$\sin(\omega\theta) \to T = \frac{2\pi}{\omega}$
$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$
$\tan(\omega\theta) \to T = \frac{\pi}{\omega}$
$\csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$
$\sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$
$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$

INVERSE TRIG FUNCTION RANGE

$-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$ $0 \le \cos^{-1} x \le \pi$ $-\frac{\pi}{2} \le \tan^{-1} x \le \frac{\pi}{2}$

Unit Converter

- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

eCalc.com

The Best Source for Math Help Reference Sheets

CALCULUS DERIVATIVES AND LIMITS

 $\frac{d}{dx}(x) = 1$

 $\frac{d}{dx}(\sin x) = \cos x$

 $\frac{d}{dx}(\cos x) = -\sin x$

 $\frac{d}{dx}(\tan x) = \sec^2 x$

 $\frac{d}{dx}(\sec x) = \sec x \tan x$

 $\frac{d}{dx}(\csc x) = -\csc x \cot x$

 $\frac{d}{dx}(\cot x) = -\csc^2 x$

 $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$

 $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$

 $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$

 $\frac{d}{dx}(\ln(x)) = \frac{1}{x}, x > 0$

 $\frac{d}{dx}(\log_a(x)) = \frac{1}{x\ln(a)}$

 $\frac{d}{dx}(a^x) = a^x \ln(a)$

 $\frac{d}{dx}(e^x) = e^x$

 $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$

COMMON DERIVATIVES

DERIVATIVE DEFINITION

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

BASIC PROPERTIES

(cf(x))' = c(f'(x)) $(f(x) \pm g(x))' = f'(x) \pm g'(x)$ $\frac{d}{dx}(c) = 0$

MEAN VALUE THEOREM

If f is differentiable on the interval (a, b) and continuous at the end points there exists a c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

PRODUCT RULE

$$(f(x)g(x))' = f(x)'g(x) + f(x)g(x)$$

QUOTIENT RULE

 $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

CHAIN RULE

$$\frac{d}{dx}\Big(f\big(g(x)\big)\Big) = f'\big(g(x)\big)g'(x)$$

LIMIT EVALUATION METHOD – FACTOR AND CANCEL

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'S RULE

If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

eCalc.com The Best Online Calculator

- The Best Online Calcul
- Unit Converter
- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

CHAIN RULE AND OTHER EXAMPLES

$$\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$$

$$\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$$

$$\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)]$$

$$\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)]$$

$$\frac{d}{dx}(\cos[f(x)]) = f'(x)\sec^2[f(x)]$$

$$\frac{d}{dx}(\sin[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)]$$

$$\frac{d}{dx}(\sec[f(x)]) = \frac{f'(x)}{1+[f(x)]^2}$$

$$\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)}\left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right)$$

PROPERTIES OF LIMITS

These properties require that the limit of
$$f(x)$$
 and $g(x)$ exist

$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

LIMIT EVALUATIONS AT +- ∞

$$\lim_{x \to \infty} e^{x} = \infty \text{ and } \lim_{x \to -\infty} e^{x} = 0$$

$$\lim_{x \to \infty} \ln(x) = \infty \text{ and } \lim_{x \to 0^{+}} \ln(x) = -\infty$$
If $r > 0$ then $\lim_{x \to \infty} \frac{c}{x^{r}} = 0$
If $r > 0 \& x^{r}$ is real for $x < 0$ then $\lim_{x \to -\infty} \frac{c}{x^{r}} = 0$

$$\lim_{x \to \pm \infty} x^{r} = \infty \text{ for even } r$$

$$\lim_{x \to \infty} x^{r} = \infty \& \lim_{x \to -\infty} x^{r} = -\infty \text{ for odd } r$$

eCalc.com

The Best Source for Math Help Reference Sheets

CALCULUS INTEGRALS

DEFINITE INTEGRAL DEFINITION

 $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k})\Delta x$ where $\Delta x = \frac{b-a}{n}$ and $x_{k} = a + k\Delta x$

FUNDAMENTAL THEOREM OF CALCULUS

 $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$ where *f* is continuous on [*a*,*b*] and *F*' = *f*

INTEGRATION PROPERTIES

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} f(x) \pm g(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$
$$\int_{a}^{a} f(x)dx = 0 \text{ and } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

APPROXIMATING DEFINITE INTEGRALS

Left-hand and right-hand rectangle approximations

$$L_n = \Delta x \sum_{k=0}^{n-1} f(x_k) \qquad \qquad R_n = \Delta x \sum_{k=1}^n f(x_k)$$

Midpoint Rule

$$M_n = \Delta x \sum_{k=0}^{n-1} f(\frac{x_k + x_{k+1}}{2})$$

Trapezoid Rule

$$T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + f(x_n) \right)$$

APPROXIMATION BY SIMPSON RULE FOR EVEN N

$$S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))$$

- Unit Converter
- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

COMMON INTEGRALS

$$\int k \, dx = kx + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C, n \neq -1$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \frac{1}{a^2 + u^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + C$$

TRIGNOMETRIC SUBSTITUTION

EXPRESSION	SUBSTITUTION	EXPRESSION EVALUATION	IDENTITY USED		
$\sqrt{a^2 - x^2}$	$x = a \sin \theta$ $dx = a \cos \theta d\theta$	$\sqrt{a^2 - a^2 \sin^2 \theta} = a \cos \theta$	$1 - \sin^2 \theta \\= \cos^2 \theta$		
$\sqrt{x^2-a^2}$	$x = a \sec \theta$ $dx = a \sec \theta \tan \theta d\theta$	$\sqrt{a^2 \sec^2 \theta - a^2} = a \tan \theta$	$\sec^2 \theta - 1 \\= \tan^2 \theta$		
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$ $dx = a \sec^2 \theta d\theta$	$\sqrt{a^2 + a^2 \tan^2 \theta}$ $= a \sec \theta$	$1 + \tan^2 \theta$ $= \sec^2 \theta$		

INTEGRATION BY SUBSTITUTION

$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

where
$$u = g(x)$$
 and $du = g'(x)dx$

INTEGRATION BY PARTS

$$\int u \, dv = uv - \int v \, du \quad \text{where } v = \int dv$$
or
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

eCalc.com

The Best Source for Math Help Reference Sheets